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SOME NEW THREE-LEVEL RESPONSE SURFACE DESIGNS

1. INTRODUCTION

In many experiments, both the dependent variable y and the
independent variables or factors z 1 , X2 ,..., x, are quantitative variables, but the
mathematical function relating y to the x's is unknown. In such cases the unknown
function may be approximated by a low-order polynomial. Designs for collecting
data to estimate the coefficients of the polynomial are called response surface
designs. These designs specify the settings of the i's at which the dependent
variable y is measured. A design for v factors is written as an Nx v design matrix
D, where N is the number of design points or experimental runs required. For
analysis of the data, the design matrix is expanded into an Nxp model matrix X
that has one column for each coefficient of the polynomial model.

Designs for fitting the second-order polynomial

V p v-I V

yn=0+ Xi, n + n+ ,, (1)
i=1 i=1 i=1 j'=i+1

where the errors en (n = 1,2,... ,N) are independently distributed with common
variance a 2, must have at least three levels of each factor. Designs with three levels
of each factor may be preferred for ease of experimentation, or may be required
because the levels of one or more factors can not be set accurately. When the
factor level settings are only approximate, it does not seem appropriate to use an
experimental design that requires setting the factors to many levels that differ from
each other by a small amount. Designs with three levels of the factors are not
necessarily inferior to designs with more levels by other criteria (such as the number
of experimental runs required). Box and Behnken' have provided three-level
designs for fitting second-order response surfaces over a spherical region for v = 3,
4, 5, 6, 7, 9, 10, 11, 12 and 16 factors. This report presents three-level designs for
fitting second-order response surfaces for v = 6, 7, 8, 9, 10, 11, 13, and 15 factors.
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2. BACKGROUND AND NOTATION

The Box-Behnken designs' are obtained by combining two-level
factorial designs 2 and balanced incomplete block (BIB) or partially balanced
incomplete block (PBB) designs2 3 in a manner best explained by an example. The
three-factor Box-Behnken design is obtained by combining the 22 factorial design
with the BIB design in Table 1.

Table 1. A Balanced Incomplete Block Design

Block Treatments

1 1 2
2 1 3
3 2 3

The design columns of the factorial design are assigned to the treatments of the
BIB design in a block, while the treatments not occurring in that block are assigned
columns of zeros. .Center points (0,...,0) must be added to the design points
generated by this process; the number of center points is denoted no. Box-
Behnken designs are often written in a shorthand notation in which, for example,
(±1, 0, ±1) indicates a two-level factorial design for factors 1 and 3, and a column
of O's for factor 2. The Box-Behnken design for three factors in shorthand notation
is given in Table 2.

Table 2. Three-Factor Design in Shorthand Notation

Group Count X 1 XX

1 4 --1 0
2 4 ±1 0 ±1
3 4 0 ±1 ±1
4 n 0 0 0

Tables 1 and 2 provide essentially the same information, and the forms of Tables 1
and 2 will be used to specify designs.

To facilitate discussion of both incomplete block designs and response
surface designs, it is helpful to adopt the notation frequently used to parameterize
incomplete block designs: v treatments (from varieties in agricultural applications),



b blocks of size k, with r replications of each treatment. The response surface
designs are then for v factors, and k is the number of ±1's in the design points
(except center points). In a BIB design each treatment occurs together with each
other treatment exactly A times-that is, each pair of treatments occur together in
A blocks. In a PBIB design two treatments that are uth associates occur together
in A, blocks.

Box and Behnken' provide formulas for the least-squares estimateF b of
the coefficients f of the second-order polynomial (1), the variance of the estimates,
and the sums of squares for an analysis of variance table. Although such formulas
were useful in 1960, the availability of statistical software packages and electronic
computers for the analysis of data make such analysis by hand unnecessary now.
Further, doing the analysis by hand restricts the designs that can be used to those
that have nearly all terms of the second-order polynomial orthogonal to each other.
The variances of the estimates of the coefficients of the second-order polynomial
will be used to compare the new designs to the Box-Behnken designs. The formula
for Covariance(bo, bii) in Box and Behnken' should have s, not S2, in the
denominator (s is the block size, as given in their Table 5c). The formula for
Variance(bii) in Box and Behnken' does not yield correct values for all the designs;
the problem is not in the formula itself but in the value of the constant B in their
Table 5c. For the 3-, 5-, 7-, and 11-factor designs, the value of B is too low by CI
(so that B+C should be substituted for B). The correct values of Var(bii) and
Covar(bo, bi) were obtained from a regression analysis (see, for example,
Montgomery2, pages 420-424). The regression analyses, as well as the formulas of
Box and Behnken, assume that the low, middle, and high levels of the independent
variables are coded as -1, 0, and 1 for the analysis.

The formula for Var(bo) given by Box and Behnken' must be
generalized to be applicable to all the designs in this report; further it is helpful to
rewrite some of the formulas to show the relationships among the quantities. The
rewritten and generalized formulas are

Var(bo) - h 2 (2)
g+hno

Var(bi) A a 2 (3)



Var(bi,) = B + n o2  (4)

Var(bi-) = Du a 2  (uth associates) (5)

Covar(bo, bii = k-! Var(b o) (6)

Covar(b,, bi,) = C..a 2 + I- Vax(bo) (uth assoc.) (7)

and

Covar(b i , b .n) = Ei,,,,n 2 . (8)

Table 3 gives the constants for equations (3)-(8) for the designs discussed in this
report; the correct value of B is given for the 3-, 7-, and 11-factor Box-Behnken
designs. In Table 3. the designs are indicated by the number of factors and a letter
for the method of construction or the sequence that the design belongs to. The
letter code is B for designs constructed from BIB designs, P tor designs constructed
from PBIB designs, C for rotated central composite designs (section 4), U for
rotated uniform shell designs (sectior. 5), and S for simplex-shell designs (section 6).
The designs given by Box and Behnken' are marke!d with an asterisk. The block
size k is not an integer for the rotated central composite designs because it is -
average of different block sizes. The constants g and h in equation (2) are 0 and i
respectively for all designs except the rotated central composite design.

Comparisons of design efficiencies are usuai'y made by scaling the
designs to have the same diameter. It is on the basis of equal design diameters that
LucaS4, for example, assigns the same design efficiency to the four-factor central
composite design and the four-factor Box-Behnken design. In practice, however,
response surface designs are applied by scaling the coded factor ranges (often -i to
1, or -a to a) to the ranges of the actual factors as specified by the experimenter.
The four-factor Box-Behnken design has a ratio of design diameter to factor range
of 21/2, but the four-factor central composite design has a diameter/range ratio of 1.
Therefore, if the central composite design varies pressure from 30 psi (pounds per
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square inch) to 50 psi, the Box-Behnken design would have to vary pressure from

32.9 psi to 47.1 psi to have the same diameter as the central composite design. In
practice the pressure would be varied from 30 psi to 50 psi for the Box-Behnken
design as well as for the central composite design. The effect of common practice in
applying response surface designs is to make some of the traditional design
efficiency calculations irrelevant and to make the diameter/range ratio an important
characteristic of a response surface design.

Table 3. Constants for Equations (3)-(8)

Design N-n. k A B C C, D, D, Em..

3U* 12 2 1/8 3/16 -1/16 1/4 0

6C 44 14/5 1/20 17/224 3/224 -4/224 1/4 1/8 0
6P* 48 3 1/24 17/216 -10/216 -1/216 1/16 1/8 0

7S* 56 3 1/24 1/18 -1/144 1/8 0
7U 56 4 1/32 7/128 -1/128 3/32 0,-1/32

8C 80 34/9 1/36 69/1088 35/1088 -1/68 1/4 1/16 0

9B 96 3 1/32 11/288 -1/288 1/8 0
9p* 120 3 1/40 1/30 -1/120 -1/720 1/16 1/8 0

10P* 160 4 1/64 17/512 1/512 -7/512 1/16 1/32 0
loP 160 5 1/80 73/2000 -13/500 -1/1000 1/64 1/32 0
10c 148 82/17 1/68 305/5248 223/5248 -1/82 1/4 1/32 0

llS 132 5 1/60 23/900 -1/450 7/144 0,±1/432
1U 132 6 1/72 11/432 -1/432 15/324 0,±1/324

11B* 176 5 1/80 23/1200 -1/600 1/32 0

13B 208 4 1/64 5/256 -1/768 1/16 0

155 240 7 1/112 23/1568 3/3136 1/36 0,-1/288
15U 240 8 1/128 15/1024 -1/1024 7/256 0,-1/256

3. DESIGNS FROM INCOMPLETE BLOCKS

The designs in this section are typical of the designs given by Box and
Behnken' and are obtained by a straightforward application of the their method of
combining incomplete block designs and two-level factorial designs.
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3.1 Nine-Factor Design.

A design for nine factors that has fewer design points (N =96+ no)
than the nine-factor Box-Behnken design (N=120+no) can be obtained by
combining the 23 factorial with a BIB design (v=9, r=4, b=12, k=3, A=1).
The blocks of this BIB design can be divided into replication groups-sets of blocks
in which all the treatments occur the same number of times. The replication
groups of the BIB design can be used to block the response surface design, which is
given in Table 4. Table 3 allows a comparison of the new design and the nine-
factor Box-Behnken design by the variance of the estimated model coefficients.
The Box-Behnken design yields better estimates of the coefficients because it has
more design points. The nine-factor Box-Behnken design is based on a PBIB
design so that the variances of the interaction coefficients and the covariances
between squared-term coefficients depend on whether the factors are first- or
second-associates. The Box-Behnken design can be divided into 5 or 10 blocks, so
Box and Behnken' suggested 10 center points for their design. The new design has
4 blocks, so it would have 8 center points (2 per block) if blocked.

Table 4. Design for Nine Factors

Group Count z Z! z3 z4  z5  z6  x7  z zg Block

1 8 ±1 ±1 ±1 0 0 0 0 0 0 1
2 8 0 0 0 ±1 ±1 ±1 0 0 0 1
3 8 0 0 0 0 0 0 ±1 ±1 ±1 1

4 8 ±1 0 0 ±1 0 0 ±1 0 0 2
5 8 0 ±1 0 0 ±1 0 0 ±1 0 2
6 8 0 0 ±1 0 0 ±1 0 0 ±1 2

7 8 ±1 0 0 0 ±1 0 0 0 ±1 3
8 8 0 ±1 0 0 0 ±1 ±1 0 0 3
9 8 0 0 ±1 ±1 0 0 0 ±1 0 3

10 8 ±1 0 0 0 0 ±1 0 ±1 0 4
11 8 0 ±1 0 ±1 0 0 0 0 ±1 4
12 8 0 0 ±1 0 ±1 0 ±1 0 0 4

13 no 0 0 0 0 0 0 0 0 0 1-4
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3.2 Ten-Factor Design.

An alternative to the 10-factor Box-Behnken design can be obtained by

combining the cyclic PBIB design in Table 5 (v = b = 10, r= k =5, A =4, and

A2=2) with the 2'-' fractional factorial design defined by 5=1234 (the fifth factor

is set equal to the product of the first four factors). This alternative design has a

larger diameter than the Box-Behnken design. Both designs have 160+n 0 design

points. The choice for the number of center points depends on the goals of the

experimenter. Box and Behnken' selected the number of center points for their

designs to make the prediction variance approximately uniform within a sphere of

radius 1 when the factors are coded -1, 0, and 1; except for their 16-factor design,
which has 12 center points, this choice led to v-1 < no < v+1.

Table 5. A PBIB Design for 10 Treatments

Block Treatments

1 1 2 3 6 8
2 2 3 4 7 9

3 3 4 5 8 10
4 4 5 6 9 1
5 5 6 7 10 2

6 6 7 8 1 3
7 7 8 9 2 4

8 8 9 10 3 5
9 9 10 1 4 6

10 10 1 2 5 7

The cyclic PBIB design in Table 5 can be obtained from any one block

by repeatedly adding one to the treatment numbers in that block and restarting at

one whenever a treatment number exceeds the number of treatments. This process

is known as developing an initial block and allows cyclic incomplete block designs to
be specified by a single block.

3.3 Thirteen-Factor Design.

A design for 13 factors can be obtained by combining the 2" factorial

design with the cyclic BIB design (v = b = 13, r = k =4, and A = 1) obtained by
developing the initial block 1, 2, 4, 10. The 13-factor design has 208+ no design
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points, which is a reasonable increase from the 192 + no design points of the
12-factor design given by Box and Behnken'. Box and Behnken give the
redundancy factor (equal to the number of design points divided by the number of

parameters to be estimated) for each of their designs; they calculate the redundancy
factors using no =0. Thus, the 13-factor design has redundancy factor
R=208/105=1.98, which compares favorably to the redundancy factors of Box-
Behnken designs with more than seven factors (R's>2). The design for 13 factors
can be orthogonally blocked by using the four-factor interaction of the 2' factorial
design to separate the design points into two blocks and using the same number of
center points with each block.

4. ROTATED CENTRAL COMPOSITE DESIGNS

4.1 Central Composite Designs.

Central composite designs2 consist of three types of design points:
factorial points, star (or axial) points, and center points. In the usual orientation
and scaling, the factorial points are a 2' - f factorial design of at least resolution V
with levels ±1, the star points have each factor in turn at its high and low level
(±a) and the other factors at their middle level (zero), and the center points have
all factors at zero. When a= 1, the designs cover a cuboidal region and are
sometimes called face-centered cube designs; when a= v 1/ 2  the designs are
spherical, but to make the precision of the model predictions equal on a sphere a
must be equal to the fourth root of the number of factorial points. Designs that
yield equally precise predictions in all directions are called rotatable designs; the
prediction variance of a rotatable design is a function only of the distance of the
prediction point from the center of the design region. As it refers only to a
property of prediction variance, the term rotatable is misleading: designs that are
not rotatable can be rotated. Hence I coin the term isospheric to replace the
misused rotatable.

Design rotations are accomplished by post-multiplying the design
matrix by an orthogonal matrix. Box and Behnken' give the orthogonal matrix
that rotates the four-factor central composite design to their four-factor design.
The orthogonal matrix is

14



1 1 0 0

1 -1 0 0

0 0 1 1

0 0 1 -1

The factors are thus rotated in pairs. This method of rotating a central composite

design can be generalized to any even value of v. When the rotated designs are

scaled so that the rotated factorial points have levels -1, 0, and 1, the rotated star
points have levels -a/2, 0, and a/2. Hence the rotation produces a three-level

design for a =2. The two-factor central composite design with a =2 covers a

square region and the rotation merely produces the usual face-centered cube design.

4.2 Six-Factor Design.

The rotation of the six-factor central composite design with a=2 is
given in Table 6.

Table 6. Six-Factor Rotated Central Composite Design (a=2)

Group Count X, XI X3 X4 X5 X6

1 8 ±1 0 ±1 0 ±1 0

2 8 ±1 0 0 ±1 0 ±1
3 8 0 ±1 ±1 0 0 ±1

4 8 0 ±1 0 ±1 ±1 0

5 4 ±1 ±1 0 0 0 0

6 4 0 0 ±1 ±1 0 0

7 4 0 0 0 0 ±1 ±1

8 no  0 0 0 0 0 0

The region covered by the design is intermediate between a cube and a sphere.

Table 3 gives the constants for calculating the variances of the coefficients for both
this design and the six-factor Box-Behnken design. The constants g and h of
equation (2) are 8 and 7 respectively for the rotated six-factor central composite

with a=2. The rotated central composite design in Table 6 is nonsingular even

when no = 0, but the use of center points is recommended.
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4.3 Eight-Factor Design.

The rotated eight-factor central composite design is presented in
Table 7. The constants g and h of equation (2) are 64 and 17 respectively for the
eight-factor design in Table 7. There is no eight-factor Box-Behnken design to
compare this new design to. The design has a redundancy factor of 80/45= 1.78,
which is comparable to 1.75, the redundancy factor of the new nine-factor design.

Table 7. Eight-Factor Rotated Central Composite Design (a=2)

Group Count z1  Z2  -S  z4  z5  z8  z7  Z8

1 8 ±1 0 ±1 0 ±1 0 1 0
2 8 0 ±1 ±1 0 ±1 0 -1 0
3 8 ±1 0 0 ±1 0 ±1 -1 0
4 8 0 ±1 0 ±1 0 ±1 1 0
5 8 ±1 0 0 ±1 ±1 0 0 -1
6 8 0 ±1 0 ±1 ±1 0 0 1
7 8 +1 0 ±1 0 0 ±1 0 1
8 8 0 ±1 ±1 0 0 ±1 0 -1

9 4 ±1 ±1 0 0 0 0 0 0
10 4 0 0 ±1 ±1 0 0 0 "0
11 4 0 0 0 0 ±1 ±1 0 0
12 4 0 0 0 0 0 0 ±1 ±1

13 no 0 0 0 0 0 0 0 0

The factorial points of the unrotated design are a 2 - 2

fractional factorial design with 7 = 1234 and 8 = 1256.

4.4 Ten-Factor Design.

The rotated ten-factor central composite design is given in Table 8; it
requires 12 fewer design points than the ten-factor Box-Behnken design or the new
ten-factor design of the previous section. The constants g and h are 288 and 41
respectively for this design. The variance of the estimated interaction coefficients
depends heavily on whether the two factors are first- or second-associates. The
poor estimation of ij when i and j are first-associates suggests that this type of

16



rotation of central composite designs becomes less desirable as the number of factors
increases. Central composite designs with small values of the axial point
distance-that is, a<<v1/2 -give poor estimates of the squared-term coefficients
fi3 ; the rotation has merely moved the poor estimation to some of the interaction
coefficients.

Table 8. Ten-Factor Rotated Central Composite Design (a=2)

Group Count x, z x, x4  x5  z6  z7  z8  z9 X1 0

1 8 ±1 0 1 0 ±1 0 ±1 0 a 0
2 8 ±1 0 0 1 ±1 0 ±1 0 -a 0
3 8 0 ±1 -1 0 0 ±1 ±1 0 -b 0

4 8 0 ±1 0 -1 0 ±1 ±1 0 b 0
5 8 ±1 0 -1 0 ±1 0 0 ±1 a 0
6 8 ±1 0 0 -1 ±1 0 0 ±1 -a 0

7 8 0 ±1 1 0 0 ±1 0 ±1 -b 0
8 8 0 ±1 0 1 0 ±1 0 ±1 b 0
9 8 0 ±1 -1 0 ±1 0 ±1 0 0 -c

10 8 0 ±1 0 -1 ±1 0 ±1 0 0 c
11 8 ±1 0 1 0 0 ±1 ±1 0 0 d

12 8 ±1 0 0 1 0 ±1 ±1 0 0 -d
13 8 0 -1 1 0 ±1 0 0 ±1 0 -c
14 8 0 ±1 0 1 ±1 0 0 +1 0 c
15 8 ±1 0 -1 0 0 ±1 0 ±1 0 d
16 8 ±1 0 0 -1 0 ±1 0 ±1 0 -d

17 4 ±1 ±1 0 0 0 0 0 0 0 0
18 4 0 0 ±1 ±1 0 0 0 0 0 0
19 4 0 0 0 0 ±1 ±1 0 0 0 0
20 4 0 0 0 0 0 0 ±1 ±1 0 0
21 4 0 0 0 0 0 0 0 0 ±1 ±1

22 no  0 0 0 0 0 0 0 0 0 0

a=xx 5 ; b=x2 x 6 ; C=x 2 X5 ; d=Xx 6.

The factorial points of the unrotated design are a 210-

fractional factorial design with 8 = 1237, 9 = 2345, and 10= 1346.

An alternative to the available three-level designs is to use a design
with five levels such as a central composite design in standard orientation. If a
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five-level design is to be used, the rotated central composite design is preferable to
the standard orientation design; even with five levels, the rotated central composite
designs keep their diameter/range ratio of 21/2 (as opposed to a diameter/range
ratio of 1 for the standard orientation). For the ten-factor design in Table 8, the
isospheric a= 1281/4 = 3.3636 of the central composite design in standard
orientation changes the ±1 of groups 17-21 to ±a/2=±1.6818. The use of
±1.6818 for the rotated star points will cause all the flij's to be estimated with
equal precision. The moment matrix X'X of the isospheric design is typical of
response surface designs constructed from BIB designs rather than from PBIB
designs.

5. ROTATED UNIFORM SHELL DESIGNS

5.1 Uniform Shell Designs.

Doehlert 5 obtained the uniform shell designs by starting with a regular
simplex that has one vertex at the origin; by subtracting each vertex from all other
vertices the complete set of design points is obtained. This process generates
v(v+l) points on the surface of a sphere and a center point; in practice, n0 >1
center points would be used.

Doehlert and Klee6 show how to rotate the uniform shell designs to
minimize the number of factor levels that the designs require. The uniform shell
design for v factors as is written as an Nx(v+l) matrix M; the rows of M are all
permutations of (-1, 1, 0,..., 0) and a row of O's for the center point. Note that the
v+1 columns of M are linearly dependent and sum to zero. The matrix M is then
reduced to a design for v factors and a column of O's by post-multiplying M by an
orthogonal matrix that has a constant column. Doehlert and Klee 6 give the
orthogonal matrices that yield designs with the minimum number of factor levels.
For k=3, 7, 11, and 15, three-level rotations of uniform shell designs can be
obLained by using a Hadamard matrix (a square matrix of l's and -l's that has
orthogonal columns 7) to reduce the v+1 linearly dependent variables to a design for
v factors6 . This process and the scaling to achieve a design with levels -1, 0, and 1
can be written in matrix notation as

18



[DI] = c MH, (10)

where H is a Hadamard matrix and c is a scaling constant. The three-factor
rotated uniform shell design is the same design as the three-factor Box-Behnken
design (Table 2).

5.2 Seven-Factor Design.

The seven-factor rotated uniform shell design is presented in Table 9.
A word of caution is required. The design is described as a combination of a BIB
design (v = b =7, r = k = 4, A = 2) and the 24-1 fractional factorial design defined by
4=123; the use of the other half fraction, defined by 4=-123, will result in a
singular design.

Table 9. Seven-Factor Rotated Uniform Shell Design

Group Count X1  X2 X3 Z4  X5  x6  X7

1 8 ±1 ±1 ±1 0 0 0 ±1
2 8 0 ±1 ±1 ±1 ±1 0 0
3 8 ±1 0 ±1 ±1 0 ±1 0
4 8 0 0 ±1 0 ±1 ±1 ±1
5 8 ±1 ±1 0 0 ±1 ±1 0
6 8 0 ±1 0 ±1 0 ±1 ±1
7 8 ±1 0 0 ±1 ±1 0 ±1
8 no  0 0 0 0 0 0 0

The four ±'s in each row are a 2 4- design with 4=123.

The seven-factor rotated uniform shell design might be described as the
complement of the seven-factor Box-Behnken design: the rotated uniform shell
design has three O's and four ±1's in each row, whereas the Box-Behnken design
has three ±1's and four O's in the corresponding positions in each row. Thus the
design points of the seven-factor rotated uniform shell design lie on a sphere of
larger diameter than the design points of the seven-factor Box-Behnken design
when both designs are scaled to have a range of ±1 for each factor.
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Some of the interaction coefficients of the seven-factor design are
correlated with each other. The 21 interaction coefficients can be divided into 7 sets
of 3 coefficients that are correlated with one another, but not correlated with the
coefficients in any other set. (Thus each interaction coefficient is correlated with
two other interaction coefficients.) The correlations among the interaction
coefficients are not serious, as indicated by a variance inflation factor (VIF) of 1.5
for each interaction coefficient. The VIF is a measure of the linear dependence of a
term of the model on the other terms of the model; VIF's less than five are
considered acceptable-see, for example, Montgomery and Peck s .

5.3 Eleven-Factor Design.

Doehlert and Klee 6 do not give a table of the three-level rotation of the
11-factor uniform shell design "because of considerations of space.' The design can
be described as a combination of various 26-5 fractional factorials and a BIB design
(v= 11, r=36, b=66, k=6, A=18). The 132 design points on the shell can be
grouped into 66 pairs; each member of a pair is the reflection of the other through
the origin-that is, obtained by multiplying the other by -1. Each of the 66 pairs
has a distinct assignment of O's and ±1's to the 11 factors, but these 66 assignments
can be obtained from cyclic permutation of 6 different assignments. Table 10 gives
the cyclic permutations of the first assignment (rows 1-11) and then the first row of
the remaining five cyclic groups (rows 12, 23, 34, 45, and 56). Each row of Table 10
has either six l's or three l's and three -l's; of course the negatives of these points
will contain rows with six -l's. The six cyclic groups represent replication groups
in the BIB design, but the replication groups may not be used to block the rotated
uniform shell design.

Box and Behnken give an 11-factor design with 176+n 0 design points.
The 11-factor rotated uniform shell design has 132+n 0 design points, which is 44
fewer design points than the Box-Behnken design.

Like the 7-factor design, the 11-factor rotated uniform shell design has
correlations among some of the interaction coefficients. Each interaction coefficient
has a negative correlation with 12 other interaction coefficients, a positive
correlation with 24 other interaction coefficients, and is uncorrelated with the
remaining 18 interaction coefficients. There is a simple (but counter-intuitive) rule
for identifying the uncorrelated interaction coefficients: the estimates b, and bn
are uncorrelated if b.. aid bmn have a subscript in common-that is, if i = m, i n.
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j = m, or j = n. The VIF for the interaction terms is 1.67.

Table 10. Eleven-Factor Rotated Uniform Shell Design

Row z, 1 2  -' 14  X5  Xd -7  8 Xg -'1 111

1 1 -1 -1 -1 1 0 1 0 0 0 0
2 0 1 -1 -1 -1 1 0 1 0 0 0
3 0 0 1 -1 -1 -1 1 0 1 0 0
4 0 0 0 1 -1 -1 -1 1 0 1 0
5 0 0 0 0 1 -1 -1 -1 1 0 1
6 1 0 0 0 0 1 -1 -1 -1 1 0
7 0 1 0 0 0 0 1 -1 -1 -1 1
8 1 0 1 0 0 0 0 1 -1 -1 -1
9 -1 1 0 1 0 0 0 0 1 -1 -1

10 -1 -1 1 0 1 0 0 0 0 1 -1

11 -1 -1 -1 1 0 1 0 0 0 0 1
12 1 0 1 1 0 1 1 1 0 0 0
23 1 1 0 0 -1 -1 1 -1 0 0 0
34 1 -1 1 0 -1 1 0 0 -1 0 0
45 1 -1 0 1 0 -1 -1 0 1 0 0
56 1 0 -1 '0 -1 0 -1 1 1 0 0

Cyclically permute to obtain 66 rows; add negatives and center points.

5.4 Fifteen-Factor Design.

The 15-factor rotated uniform shell design can be described as a
combination of a 2 - ' fractional factorial design and a BIB design
(v=b= 15, r=k=8, )=4) and is given in Table 11. Note that the factor
numbers in the rows or groups of Table 11 are not in numerical order and they
must not be put into numerical order; to do so would result in a singular design.
The design uses 240+n 0 design points to estimate 136 parameters; thus, the design
has a redundancy factor of 1.76. The interaction coefficients of the 15-factor design
can be grouped into 15 sets of 7 coefficients that are correlated with one another

but not with the coefficients in any other set. The VIF for the interaction terms is
1.75.
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The 3-level rotation of the 8-factor uniform shell design given by
Doehlert and Klee6 is erroneous [Doehlert, personal communication, 1991]; the last
factor should have five levels. There is also an error (the 1 should be a zero) in the
last row of the 6-factor design in Table 4 of Doehlert and Klee8 . As a general
warning, all designs should be checked (by doing the intended analysis with random

numbers for the response) before they are used.

Table 11. Fifteen-Factor Rotated Uniform Shell Design

Columns of a 28-4 Fractional Factorial Design

Group Count 1 2 3 4 123 124 134 234

1 16 3 4 6 8 7 9 11 12
2 16 2 4 5 8 7 10 11 13
3 16 2 3 5 9 6 10 12 13
4 16 1 4 5 6 9 10 11 14

5 16 1 3 5 7 8 10 12 14
6 16 1 2 6 7 8 9 13 14

7 16 1 2 3 4 11 12 13 14
8 16 1 2 3 7 11 9 10 15
9 16. 1 2 4 6 12 8 10 15

10 16 1 3 4 5 13 8 9 15
11 16 1 5 6 7 11 12 13 15
12 16 2 3 4 5 14 6 7 15
13 16 2 5 8 9 11 12 14 15
14 16 3 6 8 10 11 13 14 15
15 16 4 7 9 10 12 13 14 15
16 no

Table entries are the factors to which the columns of a 28-4 design
are to be assigned; factors not listed in a group are assigned zeros.
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6. SIMPLEX-SHELL DESIGNS

6.1 Generation.

Simplex-shell designs are obtained by using all permutations of
(v-i, v-i, -2, -2, ... , -2), their negatives, and a row of O's for the center point
for the matrix M in equation (10). When reduced to v functionally independent
variables by a Hadamard matrix, the simplex-shell designs have a simple
interpretation: they are the complements of the rotated uniform shell designs. Like
the uniform shell designs, the simplex-shell designs have N= v(v+l)+ no design
points.

Only the simplex-shell designs for v=3, 7, 11, ... , are three-level
designs and will be considered in this report. The 3-factor simplex-shell design is
singular because the 12 design points on the sphere are two replications of six points
(which are the axial or star points of a composite design). The 7-factor
simplex-shell design is the 7-factor Box-Behnken design, so only the 11-factor and
15-factor designs need to be tabled.

6.2 Elevev .-Faetor Design.

The 11-factor design can be described as a combination of several 25- 4

fractional factorials and a BIB design (v= 11, r=30, b=66, k=5, A=12) that has
cyclic replication groups. The design is presented in Table 12. The 11-factor
simplex-shell design is very similar to the 11-factor rotated uniform shell design in
its structure and properties. Some of the interaction coefficients are correlated in
the 11-factor simplex-shell design and the same rule-that b1i and bran are
uncorrelated if they have a subscript in common-applies to the simplex-shell
design as well as to the rotated uniform shell design. The VIF for the interaction
coefficients is ! .17 for the 11-factor simplex-shell design. Like its complementary
uniform shell design, the 11-factor simplex-shell design cannot be blocked by
utilizing the replication groups of its underlying BIB design. But the 11-factor
simplex-shell design can be orthogonally blocked into two blocks: one block consists
of the 66 rows formed by cyclic permutation of the six rows given in Table 12; the
negatives of these points form the other block. The center points must be evenly
divided between the two blocks.
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Table 12. Eleven-Factor Simplex-Shell Design

Row zi  xI x. 14  Z5  Z6 z7 Z8  '9  210  Z11

1 0 0 0 0 0 -1 0 1 -1 1 1
12 0 -1 0 0 -1 0 0 0 -1 -1 -1
23 0 0 1 -1 0 0 0 0 1 1 -1
34 0 0 0 1 0 0 1 1 0 -1 -1
45 0 0 1 0 1 0 0 -1 0 -1 1
56 0 1 0 -1 0 1 0 0 0 -1 1

Cyclically permute to obtain 66 rows; add negatives and center points.

In the theory of constructing response surface designs by combining BIB
designs and two-level factorials, it is well known 9 that the response surface design
will be isospheric if the BIB design has r = 3A. The uniform shell designs for k = 7,
11, and 15 are based on BIB designs that have r = 2A; the corresponding simplex-
shell designs are constructed from BIB designs that have 2A < r < 3A. rhus the
contours of equal prediction variance are more nearly spherical for the simplex-shell
designs than for the uniform shell designs.

The 11-factor shell designs may be used as designs for 10 factors by
ignoring one design column; the point of using an 11-factor design for 10 factors is
to obtain a design with as few design points as possible.

6.3 Fifteen-Factor Design.

The 15-factor simplex-shell design can be described as a combination of
a 27 - 3  fractional factorial and a BIB design with paramcers
v-=b=15, r=k=7, A=3. The design is given in Table 13. The pattern of
correlated interaction coefficients is the same for the 15-factor simplex-shell design
as for the 15-factor rotated uniform shell design, but the amount of correlation is
less for the simplex-shell design: the VIF for its interaction coefficients is 1.33. The
15-factor simplex-shell design can be divided into two orthogonal blocks. The
design points (rows of Table 13) that have seven l's or three l's and four -l's form
one block, and the design points with seven -l's or three -l's and four l's form the
other block. The same number of center points must be used with each block.

24



Table 13. Fifteen-Factor Simplex-Shell Design

Columns of a 21-3 Fractional Factorial Design

Group Count 1 2 3 4 124 134 234

1 16 5 13 14 15 1 2 10
2 16 6 12 14 15 1 3 9
3 16 7 11 14 15 1 4 8
4 16 8 12 13 15 2 3 7
5 16 9 11 13 15 2 4 6
6 16 10 11 12 15 3 4 5
7 16 8 9 10 15 5 6 7
8 16 8 12 13 14 5 6 4
9 16 9 11 13 14 5 7 3

10 16 10 11 12 14 6 7 2
11 16 8 9 10 14 2 3 4
12 16 10 11 12 13 8 9 1
13 16 6 7 10 13 1 3 4
14 16 5 7 9 12 1 2 4
15 16 5 6 8 11 1 2 3
16 no

Table entries are the factors to which the columns of a 27-3 design
are to be assigned; factors not listed in a group are assigned zeros.

Box and Behnken' do not give a design for 15 factors, but Raghavarao0

does; his design has 512+n 0 design points. The much smaller size (240±nO points)
of the 15-factor shell designs may be interpreted as a benefit of using two-level
fractional factorial designs of less than resolution V in the construction of response
surface designs from two-level factorials and incomplete block designs. In the
terminology of incomplete block designs, it is the recovery of interblock information
that allows the use of fractional factorials of less than resolution V. It is the use of
interblock information that makes 4=-123 not equivalent to 4=123 in the 7-factor
uniform shell design, that prevents the blocking of the 11-factor shell designs by the
replication groups of the BIB designs, and that prevents reordering of the factors
within the groups of the 15-factor shell designs.
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7. THE GEOMETRY OF THE SHELL DESIGNS

Both the uniform shell designs and the simplex-shell designs can be
constructed from two regular simplexes that are centered at the origin. Denote the
vertices of one of the simplexes by a, b, c, ... ; the vertices of the other simplex are
-a, -b, -c, ... -that is, the second simplex must be the negative of the first. The
symbols a, b, c, ... , may be interpreted as points (the vertices of a simplex) or as
vectors from the origin to those points. The statement that the vectors a and b are
the same length is equivalent to the statement that the vertices a and b are the
same distance from the origin.

The design points of the simplex-shell designs are the origin and the
midpoints of the edges of the two oppositely oriented simplexes; this construction
can be readily verified by writing out the coordinates of the vertices of the
simplexes and averaging pairs of them to obtain (after rescaling) the matrix M for a
simplex-shell design. In terms of v+1 linearly dependent variables the vertices of
one simplex may be written as all permutations of (v, -1, -1, ... , -1) and the
vertices of the other simplex as all permutations of (-v, 1, 1, ... , 1). The midpoints
of the edges of the first simplex will be (a+b)/2, (a+c)/2, etc., and the midpoints
of the edges of the second simplex will be (- a - b)/2, (- a - c)/2, etc.

The design points of the uniform shell designs are the midpoints of lines
drawn from the vertices of one simplex to the vertices of the other simplex. The
midpoints of the vertex connectors will be (a-b)/2, (a-c)/2,
(-a+b)/2, (-a+c)/2, etc. There are also v+1 vertex connectors between
opposite (reflected) vertices, such as a and -a, b and -b, etc. Hence this
construction of the uniform shell designs generates v +1 center points.

The complementary nature of the uniform shell designs and the
simplex-shell designs may be explained by noting that for every point in a uniform
shell design, there is a point in the simplex-shell design that is orthogonal to it. For
example, -the point (a-b)/2 of the uniform shell design is orthogonal to the point
(a+b)/2 of the simplex-shell design. Using the dot product of vector notation,
(a-b) " (a+b) = a-a+a-b-b'a-b'b = a-a-b-b = 0 because a and b are the
same length.
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